Hexarelin
Como Compounding Pharmacy

Hexarelin: Growth Hormone Secretagogue Peptide  Purity: 98% (HPLC on request)
Molecular Formula: C47H58N12O6  Molecular Weight: 877.05  CAS No.: 140703-51-1
Sequence: His-2-Me-D-Trp-Ala-Trp-D-Phe-Lys-NH2

Description

Hexarelin is a synthetic peptide composed of 6 amino acids making it a “hexapeptide”. Hexarelin is a peptide GH secretagogue with a potent ability to stimulate GH secretion and recently reported cardioprotective actions. Research has shown that the effects from GH include increased bone mineral density, increased mitosis and meiosis which leads to more muscle mass, triglyceride hydrolysis which causes prominent fat loss, connective tissue strengthening, and improved skin elasticity. Because Hexarelin’s amino acid sequence may help in promoting the body to produce more Growth Hormone, it will not shut down the body’s own production. This is a very important factor and makes Hexarelin an attractive chain when compared to Growth Hormone alone. This synthetic peptide has similar GH-secreting properties with its predecessors such as the GHRP 6, GHRP 2 and GHRP 1. However, unlike GHRP 6, hexarelin does not induce food intake because of its incapability to drastically increase the grehlin levels that are responsible for the feeling of hunger and faster emptying of the gastric system. But the studies of Deghenghi et al. (1994) reported that hexarelin possessed similar effectiveness in stimulating the GH release in a long-lasting event and slightly more effective than the GHRP 6. These are supported by a number of studies. Locatelli et al. (1999) reported that hexarelin provides protection and healing especially for the cardiac dysfunction and abnormalities.

Protocol

Content and Potency: 5ml at 2000mcg/ml ready-to-inject subcutaneous (10 weeks supply).

Suggested dosage: 0.5ml daily for 5 days out of 7, then 0.1mL daily for 5 out of 7 days for maintainence.

Transdermal Option: 200mcg/mL x 50mL, Apply 0.5mL daily 5 days out of 7, then 1mL daily 5 days out of 7.

Clinical Research

Growth hormone-releasing activity of hexarelin, after intravenous, subcutaneous, intranasal, and oral administration in man.

E Ghigo, E Arvat, L Gianotti, B P Imbimbo, V Lenaerts, R Deghenghi and F Camanni
Source: Department of Clinical Pathophysiology, University of Turin, Italy.

Abstract: We evaluated the GH-releasing activity of hexarelin, a new synthetic hexapeptide, after i.v. (1 and 2 micrograms/kg), sc (1.5 and 3 micrograms/kg), intranasal (20 micrograms/kg), and oral (po; 20 and 40 mg) administration to 12 healthy young volunteers. Reference treatments were i.v. saline and GH-releasing hormone (GHRH; 1 microgram/kg). GH release (mean +/- SEM) after the i.v. dose of 1 microgram/kg hexarelin [area under the curve (AUC), 3175 +/- 506 micrograms/min.L] was about 2 times higher than that induced by 1 microgram/kg GHRH (AUC, 1544 +/- 161 micrograms/min.L; P < 0.001). Hexarelin (2 micrograms/kg, i.v.) elicited a further increase in GH levels (AUC, 4422 +/- 626 micrograms/min.L) compared to the 1 microgram/kg dose. The GH response to 2 micrograms/kg hexarelin, i.v., was very reproducible (AUC, 4016 +/- 563 vs. 3959 +/- 803 micrograms/min.L). The sc administration of hexarelin produced a dose-dependent GH response (AUC, 3180 +/- 392 and 4459 +/- 566 micrograms/min.L with 1.5 and 3 micrograms/kg, respectively). Intranasal administration of 20 micrograms/kg hexarelin induced GH release (AUC, 2642 +/- 452 micrograms/min.L) similar to that caused by 1 microgram/kg, i.v. Twenty and 40 mg hexarelin, po, produced a dose-related increase in GH levels (AUC, 2278 +/- 442 and 4079 +/- 514 micrograms/min.L). Biological bioavailabilities were 77.0 +/- 10.5%, 4.8 +/- 0.9%, and 0.3 +/- 0.1% for the sc, intranasal, and po routes, respectively. This study shows that the GH response to hexarelin administered by the i.v. route has a limited variability and is superior to the response to GHRH. The GH-releasing activity appeared to be dose dependent. Thus, hexarelin could be clinically useful to stimulate GH secretion in humans.